- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Acevedo, Mason (1)
-
Acevedo, Mason A. (1)
-
Acharya, Raghav (1)
-
Anderson, Philip S. L. (1)
-
Bhamla, M. Saad (1)
-
Blackburn, Albany (1)
-
Blinov, Nikita (1)
-
Castro, Jackson T. (1)
-
Cook, Andrés (1)
-
Didcock, Rosalie L. (1)
-
Ilton, Mark (1)
-
O’Neill, Declan (1)
-
Pandhigunta, Kaanthi (1)
-
Shuve, Brian (1)
-
Stone, Mavis (1)
-
Walker, Adam (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A bstract We propose a program at B -factories of inclusive, multi-track displaced vertex searches, which are expected to be low background and give excellent sensitivity to non-minimal hidden sectors. Multi-particle hidden sectors often include long-lived particles (LLPs) which result from approximate symmetries, and we classify the possible decays of GeV-scale LLPs in an effective field theory framework. Considering several LLP production modes, including dark photons and dark Higgs bosons, we study the sensitivity of LLP searches with different number of displaced vertices per event and track requirements per displaced vertex, showing that inclusive searches can have sensitivity to a large range of hidden sector models that are otherwise unconstrained by current or planned searches.more » « less
-
Cook, Andrés; Pandhigunta, Kaanthi; Acevedo, Mason A.; Walker, Adam; Didcock, Rosalie L.; Castro, Jackson T.; O’Neill, Declan; Acharya, Raghav; Bhamla, M. Saad; Anderson, Philip S. L.; et al (, Integrative Organismal Biology)Synopsis We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biomechanics and bioinspired design. The model contains five components: two motors (muscles), a spring, a latch, and a load mass. One motor loads the spring to store elastic energy and the second motor subsequently removes the latch, which releases the spring and causes movement of the load mass. We develop freely available software to accompany the model, which provides an extensible framework for simulating LaMSA systems. Output from the simulation includes information from the loading and release phases of motion, which can be used to calculate kinematic performance metrics that are important for biomechanical function. In parallel, we simulate a comparable, directly actuated system that uses the same motor and mass combinations as the LaMSA simulations. By rapidly iterating through biologically relevant input parameters to the model, simulated kinematic performance differences between LaMSA and directly actuated systems can be used to explore the evolutionary dynamics of biological LaMSA systems and uncover design principles for bioinspired LaMSA systems. As proof of principle of this concept, we compare a LaMSA simulation to a directly actuated simulation that includes either a Hill-type force-velocity trade-off or muscle activation dynamics, or both. For the biologically-relevant range of parameters explored, we find that the muscle force-velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both of these dynamic muscle properties increases the accelerated mass range where a LaMSA system outperforms a directly actuated one.more » « less
An official website of the United States government
